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Abstract-Based on a dense-gas kinetic theory model, theoretical solutions were generated to study and 
compare experimental and theoretical results for velocity profiles and heat transfer characteristics in 
granular flows in a vertical chute. The results indicated good agreement between theoretical and exper- 
imentally measured mean velocity profiles but the magnitude of the fluctuation velocities were under- 
predicted by the theoretical solutions. Qualitative agreement was found between experimental and theor- 
etical results for convective heat transfer. The results indicated that particle size and the medium density 
adjacent to the boundary played an important role in determining the heat transfer at the boundary. 
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INTRODUCTION 

Over the past two decades, significant efforts have 
been made to describe the flows of granular materials 
in terms of concepts borrowed from dense-gas kinetic 
theory [l]. While a granular flow has an overall bulk 
motion, the individual particles making up the 
material may collide, roll or slide against each other, 
and may interact with the bounding surfaces. Hence, 
the individual p,irticle motions are composed of a 
mean component and a fluctuating, or random com- 
ponent. An analogy is drawn between this random 
motion and the random motion of molecules in a 
dense gas. Ogawa [2] used the term ‘granular tem- 
perature’ to quantify the random motions of particles 
about the mean velocity. The granular temperature is 
defined as the average of the sum of the squares of 
the three fluctuating velocity components. Since the 
granular temperature is a measure of the specific ran- 
dom kinetic energy of the flow, it replaces the ther- 
modynamic temperature in the dense-gas kinetic the- 
ory based analysis of rapid granular flows. However, 
significant differences exist between the interactions 
amongst gas molecules in a dense gas and particles in 
a granular flow. Unlike the collisions between 
molecules, the collisions between granular particles 
are inelastic and always involve a dissipation of the 
random kinetic energy. Hence, in order to sustain the 
flow, it is necessary to supply energy to the system, 
either through shear work or through vibration. These 
analogies between dense gases and granular flows are 
expected to be valid in the ‘rapid granular flow’ 
regime, characterised by high shear rates and low to 
moderately high solid fractions in the flows [3]. 

7 Author to whom correspondence should be addressed. 

As in the case of dense gases, the transport phenom- 
ena in the rapid granular flow regime are determined 
by two mechanisms. The first is the streaming, or 
kinetic, mode which accounts for the transport of 
particle properties as the particles move freely across 
void spaces in the flows. The second mechanism is 
the collisional mode, which accounts for transfer of 
momentum during collisional interactions between 
particles. The kinetic mode is dominant at low solid 
fractions because the particles can ‘stream’ over longer 
distances. The collisional mode dominates at higher 
solid fractions as the increased proximity of particles 
increases the frequency of collisions. 

Savage and Jeffrey [4] and Jenkins and Savage [5] 
were responsible for the initial development of consti- 
tutive models for granular flows based on dense-gas 
kinetic theory. They derived integral forms for the 
stress and fluctuation energy flux due to the collisional 
interactions between the particles. Lun et al. [6] used 
elements of the Chapman-Enskog dense-gas kinetic 
theory (Chapman and Cowling [l]) to develop the 
kinetic theory for granular flows of slightly inelastic 
particles. Both collisional and streaming modes of 
transport were included, enabling the theory to be 
extended to dilute systems as well. Furthermore, Lun 
ef al. [6] recognized that the presence of gradients in 
the velocity, density and granular temperature profiles 
in a rapid granular flow meant that the system was 
not in an equilibrium state and hence could not be 
described by a Maxwellian velocity distribution func- 
tion. They were successful in incorporating a first 
order correction for the velocity distribution function, 
though it entailed an assumption of collisional 
isotropy. Several other works refined and extended the 
kinetic theory treatment to treat a variety of particle 
properties and flow conditions [7-l 31. The constitutive 
models based on dense-gas kinetic theory are more 
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NOMENCLATURE 

A dimensionless channel half-width T granular temperature [m’ ss’] 
Bi Biot number T* dimensionless granular temperature 
641, specific heat of air, at constant pressure T thermodynamic temperature [“Cl 

IW s (kg “C)-‘I T c/z granular temperature at a distance of 

CP specific heat of particle [W s (kg “C))‘] half a particle diameter from the wall 

% particle-particle coefficient of [m’ sm2] 
restitution u mean velocity [m s- ‘1 

e, particle-wall coefficient of restitution 41 slip velocity [m s - ‘1 
F specific body force [N mm’] K fluctuation velocity in direction ‘i 
g acceleration due to gravity [m SK*] [m ss’] 

90 radial distribution function u, mean streamwise velocity [m SK’] 
h mean heat transfer coefficient u,_,;, mean streamwise velocity at a distance 

[w (m’“C))‘] of half a particle diameter from the 
h 

wp 
wall-particle heat transfer coefficient wall [m] 
[w (m’ “C)-‘1 * u, dimensionless mean streamwise 

I identity matrix velocity 
k, thermal conductivity of assembly at Ll;. transverse fluctuation velocity [m SK’] 

critical density [w (m “C)-‘1 W channel half-width [m] 

k, thermal conductivity of interstitial gas x dimensionless streamwise coordinate 
[W (m “C)-‘1 Y dimensionless transverse coordinate. 

k k, streaming thermal conductivity 

[w (m “C>F’l Greek symbols 
k mc effective molecular conductivity 4 thermal diffusivity of assembly at 

[w (m “C)p’l critical density [m* SK’] 

k, thermal conductivity of particle Y specific fluctuation energy dissipation 
[W (m “C))‘] [kg m se31 

k, thermal conductivity of solid material I- flux of fluctuating energy [kg sm3] 

[w (m “W’l V solid fraction 
k to, total thermal conductivity k,, + k,, V* maximum shearable solid fraction for 

[W (m “C)-‘1 a particle assembly 
n unit normal vector directed from the r0/2 solid fraction at a distance of half a 

wall into the flow particle diameter from the wall 
NU* modified Nusselt number P bulk density of material [kg m-‘1 
P total stress tensor [N m-‘1 PU density of air [kg mm’] 
Pe* modified Peclet number PP particle density [kg m-j] 

qh diffusive heat flux [w mm’] 

:/ 

particle diameter [m] 
S deviatoric part of the rate of specularity coefficient 

deformation tensor [s’] x thermal resistance of interstitial fluid 
t time [s] layer. 

appropriate for the rapid granular flow regime, where 
particle interactions are characterized by short-dur- 
ation collisional contacts. Such flows are usually 
driven by high rates of deformation. 

Most theoretical analyses of granular flows are hin- 
dered by the complexity of conditions to be assumed 
at boundaries, either at the bounding walls or between 
two distinct phases within a flow. Unlike Newtonian 
flows, no-slip conditions are rarely encountered in 
most practical granular flows. Invariably, slip is 
present at the walls. The extent of slip depends on a 
variety of factors like particle and wall coefficients of 
restitution and friction, and the nature and size of 
asperities at the wall. The existence of slip, coupled 

with shearing of the flow at the wall, generates shear 
work, which may be converted into fluctuating kinetic 
energy of the individual particles. This energy is usu- 
ally dissipated into pure heat either by inelastic col- 
lisions or by frictional interactions between particles 
and in interactions between particles and the 
bounding walls. Consequently, the bounding walls 
may serve as sources or sinks of fluctuating energy. 
As a result, the general flow field of a granular flow 
cannot be solved independently of the conditions at 
the boundaries. Variations of kinetic theory argu- 
ments have been used to balance momentum and 
energy generation, flux and dissipation for different 
boundary geometries and properties [ 10, 14-l 81. 
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While convective heat transfer to solid-gas flows is 
encountered in numerous process applications, studies 
of heat transfer in such media, both experimental and 
theoretical, have been relatively few in number. In 
such flows, while the effects of the interstitial fluid are 
neglected while studying the dynamical behavior of 
most granular flows, it plays a vital role in the heat 
transfer process. Sun and Chen [19] showed that in 
most cases, the heat transfer due to conduction at 
particle-particle and particle-wall contacts con- 
tributes negligibly to the overall heat transfer process 
unless the particles have very high conductivities and 
are placed in a vacuum. Hence, the dominant mode 
of heat transfer is through heat exchange between the 
particles and the interstitial fluid. Furthermore, in the 
case of spherical particles, the local solid fraction 
immediately adjacent to a wall is always zero, and 
all heat transfer from a heated wall is through the 
interstitial fluid. Schlunder [20] reviewed some of the 
earlier work in the area. 

Sullivan and Sabersky [21] investigated the con- 
vective heat transfer from a flat plate immersed in 
a flowing granular medium in a vertical hopper-bin 
arrangement. They attempted to model the behavior 
of the fluid layer immediately adjacent to the heated 
surface in terms of a contact resistance that was 
directly proportional to the ‘effective’ thickness of the 
interstitial fluid la.yer adjacent to the wall and inversely 
proportional to the diameter of spherical particles in 
the granular medium. It was expected that the contact 
resistance should have the same numerical value for 
geometrically similar arrangements of particles adjac- 
ent to the wall. Conversely, any changes in the bound- 
ary conditions or particle sizes and shapes would alter 
the value of the contact resistance. 

Spelt et al. [22], Patton et al. [23] and Ahn [24] 
extended Sullivan and Sabersky’s work to investigate 
heat transfer to flows in an inclined chute at much 
higher velocities,. They observed good agreement 
between their data and Sullivan and Sabersky’s [21] 
theoretical model for slow high-density flows, but 
found that beyond a certain flow speed, the Nusselt 
number decreased with increasing Peclet numbers (or 
decreasing particle residence times adjacent to the 
wall). The reader is referred to Natarajan [25] or Nat- 
arajan and Hunt [26] for a more detailed discussion 
of the experimental work in inclined chute geometries. 

There is little evidence, in published literature, of 
attempts at modeling the heat transfer phenomena in 
granular flows. Louge et al. [27] used kinetic theory 
developments to investigate heat transfer in dilute 
pneumatic systems transporting massive particles, 
while Boateng and Barr [28] developed a mathematical 
model to examine heat transfer in rotary kilns. Hsiau 
and Hunt [29] used kinetic-theory arguments to arrive 
at a steaming thermal conductivity value that was 
directly proport-[onal to the square root of the granu- 
lar temperature and varied inversely with the solid 
fraction of the material. Hunt [30] used a two-dimen- 
sional discrete-element computer simulation to deter- 

mine the effective thermal conductivity and self-diffu- 
sivity for a bed of particles with random trajectories, 
but with no overall bed motion. 

This work uses the constitutive relations based on 
dense gas kinetic theory developed by Lun et al. [6] to 
examine the heat transfer to granular flows from 
heated walls, in a vertical chute geometry. Com- 
parisons are made with the experimental measure- 
ments of Sullivan and Sabersky [21] and Natarajan 
and Hunt [26]. The study also examines the effect of 
particle properties and boundary conditions on the 
density of the flow adjacent to the wall and on the 
resultant heat transfer rates. 

ANALYTICAL BACKGROUND 

This work examines the heat transfer in dense 
granular material flows in a two-dimensional, vertical 
channel, which is the geometry used in the experiments 
by Natarajan [25]. The constitutive model for granular 
flows, based on dense-gas kinetic theory (Lun et al. 

[6]) is utilized in order to establish the velocity, density 
and granular temperature fields in the vertical chan- 
nel. The governing hydrodynamic equations for such 
granular flows are : 

dp -_= 
dt 

-pv*u 

p$ = pF-V-P 

ips = -P:Vu-v-r-y (3) 

where p is the bulk flow density and is equal to the 
product of the particle density pP and the solid fraction 
v. In the above equation, P is the total stress tensor 
comprising of the contributions from the collisional 
and translational stress tensor components (Lun et al. 

[6]), F the specific body force, IY the fluctuating energy 
flux and y is the specific energy dissipated due to 
inelastic particle collisions. As explained in Lun et al. 

both P and IY are composed of both the streaming 
and collisional components of momentum and energy 
transfer, respectively, The ‘granular temperature’, T, 
is defined as the average of the sum of the squares of 
the three fluctuating velocity components and is a 
measure of the specific random kinetic energy of the 
flow. 

Lun et al. [6] obtained the following expression for 
the stress tensor P, the fluctuating energy flux r and 
the specific energy dissipation y : 

P = ppSt(v,e,)T-p,o 
8 

-yv2g,T”ZV*u I 
3& 1 

-2p,ogdv, e,)T”‘S (4) 

r = -P~~J,(v, e,)T”*VT+g,(v, e,)T3!‘Vv] (5) 
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y = $g,(v, eP)T3’2 (6) 

where I is the identity matrix and S is the deviatoric 
part of the rate of deformation tensor, and is given 
by: 

s = ~(~,,~+~p,n)-fUC,~n,p, L&P = X,Y,Z (7) 

and rl = i (1 +e,). Here v is the solid fraction, o the 
particle diameter and eP the coefficient of restitution 
for collisions between particles. 

Throughout this work, the form of the radial dis- 
tribution function used is the one suggested for 
sheared flows [9] : 

go(v) = (1 - v/v*)-2.SV”. (8) 

Here v* is the maximum shearable solid fraction for 
the particle assembly. It must be noted that the radial 
distribution function defined above is based on the 
assumption of collisional isotropy which requires an 
isotropic distribution of collision angles between the 
two colliding spheres. 

The coefficients gr, g2, g3, g4 and g5 are expressed 
as : 

Sl(V, ep) = v+4v29, (9) 

(10) 

93(v, cp) = 
25fi 

L 
16r1(41- 3317) i go 

+ $[l+V(4~-3)lv 

+ $2 
[ 

9r/(4r/-3)+ a(41 -3311) 
I 1 

v’go (11) 

15&(2q-1)(1-l) 
s‘l(v, cp) = 4 41-331 

(12) 

sdv, e,) = 48r(* - f7)v2go. 
h 

(13) 

Johnson and Jackson [17] derived boundary con- 
ditions for granular flows using arguments similar to 
those of Hui et al. [14], and also included frictional 
interactions. However, frictional interactions were not 
considered in this work as studies by Natarajan [25] 
indicated that the frictional model proposed by John- 
son and Jackson [17] failed to predict physically plaus- 
ible flow behavior in the limit of very high solid frac- 
tions. In the limiting case of purely collisional 
interactions between the wall and the flow particles, 
their conditions reduced to a form similar to that of 
Richman [ 151. However, because their conditions did 
not invoke any explicit description of the boundary 
geometry, certain experimentally determined par- 

ameters have to be incorporated into their conditions. 
The boundary conditions derived by Johnson and 
Jackson [17] have been used in this work. 

Equating the stress exerted by the flow on the 
boundary with the limit of the stress in the flowing 
material on approaching the boundary results in the 
following condition on the slip velocity, 

uSI * P - n + ~‘~~~p~T”21~,llgo(~) = o, 
lkl 6v* 

c14J 

The slip velocity, u,, = u-u,,,,, is the relative velocity 
between the particles in contact with the wall and the 
wall itself. The unit normal vector directed inwards 
from the wall into the flow is designated as n. The first 
term in equation (14) above is the limit of the stress 
in the flow approaching the wall. The second term 
represents the stress acting on the boundary due to 
particle-wall collisions. The ‘specularity coefficient’ 
4 is defined as the average fraction of the relative 
tangential momentum transferred during a collision 
between the particle and the boundary. It serves as 
a measure of the roughness and orientation of the 
bounding surface and ranges from zero for perfectly 
specular collisions to unity for perfectly diffuse colli- 
sions. 

A boundary condition on the fluctuating energy is 
obtained from an energy balance on a slice of van- 
ishingly small thickness of material enclosing an 
element of the solid boundary and is given by : 

_” _r = vpv(l -e&bT3i2go(v) 
V* 

While the first term on the right hand side of equa- 
tion (15) represents the dissipation of fluctuation 
energy due to inelastic particle-wall collisions, the 
second term represents the production of fluctuation 
energy at the boundary due to shear work. The left 
hand side of equation (15) represents the net fluc- 
tuation energy flux into the bulk. It is important to 
note that implicit in equation (15) is the assumption 
that all shear work due to collisional stresses is con- 
verted into random fluctuation energy and not into 
heat. 

The temperature distribution across the flow field 
was determined by solving the following internal 
energy equation over the flow field. 

where Prefers to the thermodynamic temperature and 
y is the contribution due to the inelastic dissipation of 
random kinetic energy into pure thermal energy. The 
relation vpPc, + (I- v)p,,,c,,, cx pc, was applied in the 
above equation. Here, pP and cP are the density and 
specific heat capacity for the particles and pair and c,,, 
are the corresponding qualities for the air. Further- 
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more, the diffusive flux term in equation (16) may be 
written as : 

V.‘& = -V*(k,,,VT) (17) 

where k,,, is defined as the simple sum of the thermal 
conductivity contributions due to molecular con- 
ductivity, km, and the streaming or kinetic conduc- 
tivity, kkt, arising out of the kinetic theory analysis. 

Gelperin and Einstein [31] proposed the following 
expression for the effective molecular conductivity, 
k,, of a solid-gas bulk material, 

k ““=I$ 
k!3 

where k, and k, are the conductivities of the gas and 
the solid material, respectively. 

Hsiau and Hunt [29] used arguments based on the 
dense-gas kinetic theory model, assuming that the 
only mode of heat transfer was the streaming mode. 
Heat transfer during the collisional interactions 
amongst the partimales was assumed to be negligible. 
Apart from the a:;sumptions inherent in the kinetic 
theory analysis, the Biot number was assumed to be 
less than 0.1 to allow a lumped mass analysis for the 
particles. Under these assumptions, they arrived at 
the following expression for the effective conductivity 
k,, : 

(19) 

Equation (19) implies that a decrease in the solid frac- 
tion would allow particles to stream across larger dis- 
tances, thereby enhancing the effective conductivity. 

A comparison of equations (18) and (19) suggests 
that for low-density, highly sheared flows, the two 
mechanisms may be operating in opposition to one 
another. A decrea:se in density reduces the bulk molec- 
ular conductivity. but may simultaneously enhance 
the streaming conductivity. 

The first part of the next section describes the 
numerical solution of the momentum and fluctuation 
energy equations [equations (2) and (3)] leading to 
the determination of mean and fluctuation velocity 
profiles for granular flows in a vertical chute. Com- 
parisons are made with experimentally measured pro- 
files [32]. The second part presents the results obtained 
by the numerical solution of the internal energy equa- 
tion [equation (16)]. Convective heat transfer 
coefficients were evaluated for a range of flow situ- 
ations and compa.red with experimental data [26]. 

MOMENTUM AND FLUCTUATION ENERGY 

EQUATIONS 

For the numerical solutions, the flow in a vertical 
channel is assumed to be steady and two-dimensional, 

with fully developed density, velocity and fluctuation 
velocity profiles. The x-direction was the direction of 
mean motion while the y-direction was transverse to 
the direction of mean flow of the material. For the 
two-dimensional flow, the equations (2) and (3) reduce 
to : 

-(!j++$$+,=o (20) 

aP,, ( > ay = 0 

and 

-p,% _ ar, -y = 0. 

a~ ay 

(21) 

The contribution to the normal stresses from the 
kinetic-theory model [equation (4)] is given by : 

Pxx = P,, = PP~ I (v> e,)T (23) 

and the shear stresses are given by : 

PXy = PyX = - ppog2(v, e&T”* !?f~. 
dy 

(24) 

The flux of fluctuating energy in the direction nor- 
mal to the walls is 

ry = -ppa +g4(v, ep)T312 dv 1 dy 

(25) 

Hsiau [33] showed that, for a fully developed flow, 
aP,,/ax is negligible for a vertical distance greater 
than twice the channel depth. 

The non-dimensional momentum equations are 
obtained by substituting the expressions for the 
stresses from equations (24)-(26) into equations (20t 
(22) and by substituting for the non-dimensional vari- 
ables. As a result, the following expressions are 
obtained, 

&, +A% = 0 (26) 

and 

$$a(v, e,)T*l = 0. (27) 

The non-dimensionalized form of the fluctuation 
energy equation is given by : 

+g4(v, e,)T*3’2 Fy 
I 

--A’g,(v, e,)T*3’2 = 0 (28) 

with non-dimensional variables 
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where W is the half-width of the channel and g is the 
acceleration due to gravity. 

The nondimensionalized form of the boundary con- 
ditions (Johnson and Jackson [17]) from equations 
(14) and (15) for the shear stress and the balance of 
fluctuation energy at the wall, respectively, are given 
by: 

* ~'JS~VA"~T*'~'IU~:I~~(V) 
-g2(v, e,)A-‘!‘T*d!$ = 

6v* 

(29) 

and 

- 
dT* dv 

eP) do +&(v, e,)T* dY 1 
= _ 4’&v~242so(4 + Ml -&fiT*g,W 

6v* 4v* 

(30) 

An investigation of equation (27) shows that given 
a constant particle coefficient of restitution eP, the 
solid fraction at any point is a function of only the 
normalized granular temperature T*. Therefore, all 
functions of v can be written in terms of the granular 
temperature in equations (26) and (28). Consequently, 
a system of two coupled, ordinary second-order 
differential equations for the normalized flow 
velocity, u$ and normalized granular temperature T* 
has to be solved. 

These equations were solved using a fourth-order 
Runge-Kutta scheme. Given the two second-order 
equations, a total of four boundary conditions are 
required to solve the problem. Two of these conditions 
are obtained from equations (29) and (30) for the 
shear stress and fluctuation energy balance at the wall. 
The other two boundary conditions are obtained by 
using the symmetry of the channel to set du$/dY and 
dT*/d Y equal to zero at the channel center-line Y = 0. 
A ‘shooting’ method was used to solve the resultant 
boundary value problem. Values for u,* and T* were 
guessed for a particular value of solid fraction at the 
center-line and the equations were integrated from the 

center-line to the wall. The process was iterated, using 
a globally convergent Newton-Raphsons scheme to 
match the boundary conditions at the wall. Con- 
vergence was assumed to have been achieved when 
the difference between the left and right hand sides of 
equations (29) and (30) was less than 1 x 10e6. 

From equations (26) and (28) as well as the bound- 
ary conditions (equations 29 and 30) several physical 
parameters need to be specified. In the literature, little 
information deals with actual measurements of these 
parameters. The coefficient of restitution for particle- 
particle collisions, eP, was assumed to be 0.95 [34], 
unless otherwise specified. A value of 0.65 was 
assumed for the maximum shearable solid fraction v* 
[ 171. Since no measurements of specularity coefficients 
4’ are available, reasonable values had to be assumed 
arbitrarily. Unless specified otherwise, a value of 
4’ = 0.85 was chosen for all the numerical cal- 
culations simulating rough walls. This value was 
chosen on the basis of the comparisons between theor- 
etical and experimental streamwise velocity profiles, 
and is representative of a wall that is very rough. 
Johnson et al. [35] assumed values of $’ = 0.25 for 
aluminum walls and 4’ = 0.6 for 160 grit sandpaper. 
In the current study, walls with glass particles glued 
to them are assumed to be rougher than those exam- 
ined by Johnson et al. [35]. A range of values were 
considered for the particle-wall coefficient of res- 
titution e,. 

RESULTS 

The effect of varying the wall-particle coefficient of 
restitution (e,) is presented in Figs. l-3. While the 
dense-gas kinetic theory model of Lun et al. [6] is 
based on the assumption that the value of eP is very 
close to one, there is no such stipulation for e,, which 
appears only in the boundary conditions. Figure 1 
shows the mean velocity profiles, for different values 
of the centerline solid fraction, for values of e, equal 
to 0.95, 0.50 and 0.20. For moderate or highly dense 
flows, as shown in Fig. 1, there is a distinct central 
uniform velocity regime and a sheared regime adjacent 
to the walls. The granular temperature profiles, shown 
in Fig. 2 increase from the center towards the walls. 
The solid fraction profiles in Fig. 3 depict maximum 
values at the center and more dilated regions adjacent 
to the walls. While profiles have been presented for 
centerline solid fractions of 0.36 and less, it must be 
cautioned that these are primarily of academic interest 
only. At such low density values, particle interactions 
in the vertical chute are likely to be negligible, with 
each particle in a state of free fall under the influence 
of gravity. While the velocity profiles remain similar in 
shape and magnitude, comparisons of the temperature 
and density profiles for the three values of e, show 
interesting changes. A lower value of e, implies greater 
dissipation of random energy at the wall. Hence for 
the cases of e, = 0.50 and e, = 0.20, the granular 
temperatures decrease adjacent to the wall, 
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Horizontal Position y/W 
Fig. 1. Comparison of the theoretical nondimensionalized streamwise mean velocity profiles, for values of 

(a) e, = 0.95, (b) e, = 0.50 and (c) e, = 0.20. V, is the centerline solid fraction. eP = 0.95. W = 3.5 cm. 

accompanied by increased solid fractions in the same 
region. Reduced granular temperatures cause greater 
‘clumping’ of particles. Qualitatively similar behavior 
is observed in experimentally measured transverse 
fluctuation velocity profiles [32]. As discussed earlier, 
frictional interactions at the wall could also be respon- 
sible for such a lowering of fluctuation velocities close 
to the walls. All the above calculations are for 
4’ = 0.85. 

Comparisons between calculated and measured 
mean streamwise velocity profiles are presented in 
Fig. 4. The figures compare the numerically cal- 
culated mean velocity profiles (for a combination of 
ep = e, = 0.85) with experimental data [25, 321. The 
agreement between the numerical and experimental 
mean velocity profiles is good for the sheared 
regimes. A comparison of the graphs of the numeri- 
cally computed profiles of T”* with the measured 

profiles of the transverse fluctuation velocities [25] 
is depicted in Fig. 5. The numerical solutions over- 
predict the fluctuation velocities in the sheared 
regimes adjacent to the wall, but underpredict these 
values in the regimes away from the wall. Also, 
the gradients in the fluctuation velocity are more 
significant in the numerical solutions. It must be 
noted that the kinetic theory model applied in this 
work assumes the fluctuation velocities to be 
isotropic. Experimental studies by Natarajan et al. 
[32] and Drake [36] indicated that fluctuation vel- 
ocities were strongly anisotropic. Also, the numerical 
solutions predicted solid fraction in the range of 
0.63-0.65 across the Row section for the case com- 
pared here. In contrast, Natarajan [25] observed 
distinct low density sheared regimes adjacent to the 
wall. More detailed comparisons between numerical 
and experimental data are found in Natarajan [25]. 
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Horizontal Position y/W 

Fig, 2. Comparison of the theoretical nondimensionalized granular temperature profiles, for values of (a) 
e, = 0.95, (b) e, = 0.50 and (c) e, = 0.20. v, is the centerline solid fraction. e, = 0.95. W = 3.5 cm. 

INTERNAL ENERGY EQUATION 

The internal energy equation [equation (16)] was 
solved numerically for the entire flow field to deter- 
mine the average heat transfer coefficients. In the 
regime immediately adjacent to the wall, where solid 
fractions become extremely low, the approximation 
vppcp + (1 - v)P,,,c,~~ m pc, was replaced by the 
complete, unapproximated expression, to account for 
the increased influence of the interstitial fluid. A 
power-law scheme [37, 381 was used to discretize the 
temperature field. 

To solve for the temperature field, the momentum 
equations were first solved to establish the mean stre- 
amwise velocity, granular temperature and solid frac- 
tion profiles. As discussed earlier, the effect of the 
interstitial fluid can be neglected when investigating 

the dynamics of the system, but cannot be neglected 
in the heat transfer problem. The interstitial fluid, 
especially the layer adjacent to the heated wall plays 
a crucial role in the heat transfer process. For spherical 
particles, the solid fraction goes to zero at a flat 
bounding wall. However, as evident from the solid 
fraction profiles examined previously, the kinetic the- 
ory solutions always predict significant, non-zero solid 
fractions at the wall, as a result of the ‘continuum’ 
assumption. Hence, in order to generate realistic solu- 
tions to the heat transfer problem, assumptions are 
needed about the solid fraction profile adjacent to 
the wall. More specifically, a profile form has to be 
assumed such that the solid fraction decreases from 
the value predicted by the kinetic-theory model at a 
distance of half a particle diameter from the wall to a 
value of zero at the wall. Using a simple analysis, 



Kinetic theory analysis of heat transfer in granular flows 1937 

(a) 

e, = 0.95 

a 

UC = 0.05 

o., 0.2 0.3 0.4 0.5 0.e 0.7 0.e Cl.0 1 

I,, = 0.645 (b) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.e 0.0 , 

Horizontal Position y/W 

Fig. 3. Comparisons of the theoretical solid fraction profiles, for values of (a) e, = 0.95, (b) e, = 0.50 and 
(c) e, = 0.20. v, is the centerline solid fraction. eP = 0.95. W = 3.5 cm. 

based on Fig. 6, the solid fraction profile adjacent to 
the wall was assumed to be of the form : 

v(y) = r,,*(l-(v+&n’2)Y) (31) 

where v,,~ is the solid fraction at a distance of half a 
particle diameter from the wall. Also, though there is 
a slip between the glass particles and the wall, it is 
realistic to expect that a no-slip condition would exist 
between the air and the wall. Hence, the air velocity 
was assumed to be linearly decreasing to zero over the 
distance of half a particle diameter adjacent to the 
wall, by adopting the profile : 

(32) 

Furthermore, in order to be consistent with the 
assumed solid fraction profile adjacent to the wall, the 

granular temperature was also assumed to go to zero 
at the wall. This was done to account for the fact that 
it is ambiguous to have a non-zero granular tem- 
perature at a position where the solid fraction is zero. 
Therefore, when evaluating the value of kk, in the 
regime within half a particle diameter from the wall, 
a linear profile was assumed for the square root of the 
granular temperature, of the form : 

Y-(W-42) 
aI2 > 

(33) 

where T,,, is the value of the granular temperature at 
a distance of half a particle diameter from the wall. 
Such an assumption is unrealistic to a certain degree, 
as ideally, particles impacting the wall have a non- 
zero translational fluctuation velocity that is constant 
for the whole particle. However, immediately adjacent 
to the wall, the continuum assumption governing the 
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Fig. 4. Comparison of experimental and theoretical mean streamwise velocity profiles. eP = 0.85. e, = 0.85 
W = 2.5 cm. 

kinetic theory solutions breaks down as changes in 
solid fraction profiles occur over distances much less 
than a particle diameter. This is contrary to the stipu- 
lation of the continuum assumption that flow proper- 
ties remain constant over a distance of several particle 
diameters. However, it is evident from the exper- 

where 

imental data that steep gradients in the transverse 
fluctuation velocity profile occur over distances less 
than a particle diameter, in the sheared regimes adjac- 
ent to the wall. Physical property values used in the and 
numerical solutions are listed in Table 1. The tem- 
perature at the inlet section, as well as at the centerline 
was assumed to be 24°C. 

RESULTS 

To make comparisons with experimental data and 
the Sullivan-Sabersky model, a series of plug flow 
solutions were generated, using the kinetic theory 
model without friction, by assuming a value of 0.01 
for the specularity coefficient 4’. The values of the 
mean solid fractions for all the flows in this set of 
numerical solutions were in the range 0.64-0.65. While 
this regime is certainly not a rapid granular flow 
regime and hence cannot be described by a kinetic 
theory model, the purpose of the exercise was to gen- 
erate a set of plug flows, with uniform velocity and 
solid fraction profiles, using the numerical scheme 
already in place. 

On the basis of their observations and experimental 
results, Sullivan and Sabersky [21] arrived at the fol- 
lowing semi-empirical relation : 

Nu* =g 
s 

(34) 

(35) 

(36) 

The expression in equation (34) was derived for a 
uniform plug flow, at a velocity U past a heated plate 
of length L. The thermal conductivity and the diffu- 
sivity of the bulk material, at critical density, are given 
by kc and cl0 respectively, while k, is the conductivity 
of the interstitial fluid. The length-averaged heat 
transfer coefE:ient is given by h. In essence, this model 
considered the flow regime to be composed of two 
distinct regions : the bulk flow material, considered as 
a continuum with uniform density (the critical density) 
and velocity, and an interstitial fluid layer separating 
the heated wall from the granular material continuum. 
The interstitial fluid layer was assumed to have a ther- 
mal resistance x, which may be defined as 

X _’ = (&g/k& where h,, is the wall-particle heat 
transfer coefficient (or the thermal conductance 
between particles and the wall). The thermal con- 
ductance is expected to be a strong function of the 
local geometric arrangement of particles as this would 
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Fig. 5. Comparisons of theoretical root mean square fluctuation velocity profiles with experimental trans- 
verse fluctuation velocity profiles for values of (a) eP = 0.95, e, = 0.95, (b) e, = 0.85, e, = 0.50, and (c) 

e, - 0.85, e, = 0.85. W = 2.5 cm. 

At a distance h from the particle centerline, t,he solid fraction is given by 

v - ~i~/V 
*L(a,*) Ox 0 = &/z(l - ($)I 

Fig. 6. Schematic for the assumed functional form of the solid fraction near the wall. 



1940 V. V. R. NATARAJAN and M. L. HUN’I 

Table 1. Property values used in the numerical calculations 

2500 kg mm’ 
903.95 J kg “C-l 
1005.70 J kg “C - 1 
0.026 W m “C-’ 
0.910 W m “C-’ 
0.210 W m “C-’ 
1.5x10~‘m2s-’ 

PC!* = yf)‘(k)2 
Fig. 7. Variation of Nu* and Pe*. Comparison of the mea- 
sured data for plug flows (Natarajan and Hunt [26]) with 
the semi-empirical Sullivan and Sabersky relation and the 
numerical calculations based on kinetic theory. 0 = 3 mm. 
ep = 0.95, e, = 0.50 and 4’ = 0.025 for the kinetic theory 

solution. 

significantly influence the ‘effective’ thickness of the 
interstitial fluid layer. As a consequence, x would 
depend on factors like the particle shape and the wall 
surface roughness. 

Sullivan and Sabersky [21] found good agreement 
between their measurements and their theoretical 
model. However, their experiments were performed in 
the plug flow regime with negligible variations in flow 
densities adjacent to the heated plate. 

Figure 7 compared the variation of Nu” with Pe* 

for the experimental data from Natarajan and Hunt 
[32] and the Sullivan-Sabersky semi-empirical model 
with the calculations for the plug flows generated from 
kinetic-theory. Up to a value of Pe* = 600 there is a 
good agreement among the three different sets. 
However, neither the Sullivan-Sabersky model nor 
the calculations based on kinetic theory can replicate 
the measured plateau of the heat transfer coefficients 
at higher values of Pe*. Both the Sullivan-Sabersky 
and kinetic-theory results are based on assumptions 
of constant flow density, contrary to the observations 
in the actual experiments. 

To investigate the convective heat transfer behavior 
in sheared flows, three combinations of eP and e, were 
chosen to integrate the momentum equations for a 
range of centerline solid fraction values from 0.05- 

Mean Fiow Velocity (m/s) 
Fig. 8. Variation of the theoretical mean solid fraction (v,,,) 
and the solid fraction at the wall (v,,,,) with the mean flow 
velocity. ep = 0.95. Note that both symbols and lines in the 
figure represent numerically calculated values and do not 

represent experimental data. 
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Fig. 9. Variation of the theoretical solid fraction at the wall 
(v~.,,) with the flow slip velocity. ep = 0.95. Note that the 
symbols in the figure represent numerically calculated values 

and do not represent experimental data. 

0.6495. The value of eP was kept constant at 0.95 while 
the values of e, were set at 0.2, 0.5 and 0.95 for the 
three sets. All the solutions were for a value of 
4’ = 0.85. As discussed earlier, the density of the flows 
adjacent to the walls, plays an important role in deter- 
mining the heat transfer coefficients, especially for 
flows that are subjected to high shear. Figure 8 shows 
the variation of the average solid fraction (v,,,) and 
v,,, (or v,,J, with the average velocity. It is observed 
that for e, = 0.95, the difference between the values 
for vave and v,,,, is quite significant. However, this 
difference decreases with a decrease in the value of e,. 
The variation of v,,,, with the slip velocity is shown in 
Fig. 9. For the regime of solutions physically plausible 
for flows in a vertical channel (v > 0.3), both v,,, and 
v,,,~ decrease with an increase in velocity, qualitatively 
the same behavior as that observed in experiments by 
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Fig. 10. Variation of the theoretical average granular tem- 
perature with the average solid fraction (vaJ. eP = 0.95. Note 
that the symbols in the figure represent numerically cal- 

culated values and do not represent experimental data. 

Fig. 11. Variation of the theoretical wall granular tem- 
perature with the wall solid fraction (v,,,,). ep = 0.95. Note 
that the symbols in the figure represent numerically cal- 

culated values and do not represent experimental data. 

Patton et al. [23] and Ahn [24]. It is noteworthy that, 
for values of v > 0.3, a change in the value of e, does 
not influence these curves significantly. Another detail 
is the difference between the values of v,, and v,,~ in 
a flow. These results suggest that the average solid 
fraction may not be the appropriate parameter to use 
when evaluating thermal properties for the particle- 
air mixture adjacent to the wall. 

The variation of the average granular temperature 
with the average solid fraction is presented in Fig. 10, 
while Fig. 11 depicts the corresponding values at the 
wall. The granular temperature decreases with an 
increase in solid fraction, except at extremely low solid 
fractions. 

The results of the heat transfer calculations for the 
sheared flows are shown in Fig. 12 in the form of a 
graph of Nu* vs. Pe*. The lines depict the results 
obtained by suppressing the contribution of k,, 

!a, #  0 
- e, = 0.95 
-.-. e.,, = 0.50 

e._ = 0.20 

I 
5w 1000 1500 

Pe’ = E(f)“($)” 

Fig. 12. Variation of Nu* and Pe*. Comparison of the theor- 
etical solutions with, and without, the influence of the kinetic 
conductivity (43 contribution. (r = 3 mm. q, = 0.95. Note 
that both the symbols and lines in the figure represent 
numerically calculated results and do not represent exper- 

imental data. 

I’ 

<’ 
’ * 

* 
7.5 - i’ * * 
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Plug flaws 

- e, = 0.95 
-.-. ey = 0.60 
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Fig. 13. Variation of Nu* and Pe* Comparison of the exper- 
imentally measured data for plug and shear flows (Natarajan 
and Hunt [26]) with numerically calculated results. D = 3 

mm. e, = 0.95. 

towards the net conductivity while the symbols depict 
the results obtained by including kk,. For particles of 
3 mm diameter, the kinetic contribution is negligible 
over the whole range of solid fractions and shear rates. 
A comparison of the numerical results with the exper- 
imental data for both sheared and plug flows [26] is 
presented in Fig. 13. The numerically calculated pro- 
files for the sheared flows show a maximum value for 
Nu*, similar to the experimental results of Spelt et 
al. [22], Patton et al. [23] and Ahn [24]. However, a 
comparison of the numerical profiles with the exper- 
imental data for sheared flows shows the kinetic the- 
ory underpredicting heat transfer coefficients for 
values of Pe* < 300. Also, the theoretical results do 
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Fig. 14. Variation of the heat transfer coefficient with flow 
slip velocity. Comparison of the influence ofparticle diameter 
on the heat transfer coefficient. eP = 0.95. Note that both the 
symbols in lines in the figure represent numerically calculated 

results and do not represent experimental data. 

not predict the plateau of the heat transfer coefficients 
observed in the experiments for higher velocities. 

To examine the influence of particle size on the 
contribution of k,, towards the effective heat transfer, 
solutions were also generated for particle diameters of 
1 mm and 0.5 mm (with the size of the channel scaled 
so that W/o was constant for all three cases) with 
eP = e, = 0.95. The length of the heated plate was set 
at 82.16 cm for each value of the particle diameter. 
The values of the average heat transfer coefficient h 
vs. the slip velocity are plotted in Fig. 14. The influence 
of k,, increases with a decrease in the particle diameter. 
In the case of the smallest particle size investigated 
(0.5 mm), the maximum value of the heat transfer 
coefficient is achieved at a slip velocity three times 
greater in the case where the streaming component is 
included, than in the case where it is not. The value of 
the peak is also higher for the case including the effect 
of k,,. Smaller particle diameters were not investigated 
as it was expected that at such sizes the assumption 
neglecting the effect of the interstitial fluid while deter- 
mining the flow dynamics would no longer be valid. 

All the results described previously were for a specu- 
larity of 0.85. Figures 15-18 investigate the effect of 
varying the value of 4’. From the figures, it is apparent 
that the effect of lowering the value of 4’ is to cause 
greater ‘clumping’ of particles, increasing the solid 
fraction close to the walls. Consequently, as evident 
from Fig. 18, the value of Nu* increases with a 
decrease in the value of 4’ for a given value of Pe*. As 
elucidated by the discussion about plug flows earlier in 
this section, a lower value of the specularity coefficient 
leads to less shearing at the wall thereby leading to 
higher solid fractions. 

CONCLUSIONS 

Theoretical solutions, based on a dense-gas kinetic 
theory model, were generated to study and compare 
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culated results and do not represent experimental data. 

(Y,~~) with the mean flow velocity. eP = 0.95, e, = 0.50. Note 
that the symbols in the figure represent numerically cal- 
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Fig. 16. The effect of varying the value of the specularity 
coefficient 4’ on the variation of the wall solid fraction (vW,,,) 
with the flow slip velocity. eP = 0.95, e, = 0.50, (T = 3 mm. 
Note that the symbols in the figure represent numerically 
calculated results and do not represent experimental data. 

experimental and theoretical results for velocity pro- 
files and heat transfer characteristics in granular flows 
in a vertical chute. Calculated mean velocity profiles 
were found to be in good agreement with experimental 
data. The theoretical solutions, in these cases, pre- 
dicted solid fractions in the range of 0.64-0.65 across 
the entire flow section. However, in the actual exper- 
iments, there were distinct sheared regimes where the 
solid fractions were lower than the close-packed value. 
Also, the theoretical profiles for the granular tem- 
perature showed a much stronger dependence on the 
shear rate than was evident in the experimental data. 
Furthermore, because of the assumptions of isotropy 
in the granular temperature, the kinetic theory results 
were unable to replicate the anisotropic distribution 
of the fluctuation velocities observed experimentally. 
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Fig. 17. The effect of varying the value of the specularity 
coefficient 4’ on the variation of the wall granular tem- 
perature with wall solid fraction (v,,,,). ep = 0.95, e, = 0.50, 
c = 3 mm. Note that the symbols in the figure represent 
numerically calculatl:d results and do not represent exper- 

imental data. 

Fig. 18. The effect ‘of varying the value of the specularity 
coefficient 4’ on the variation of Nu* with Pe*. ep = 0.95, 
e, = 0.50, c = 3 mm. Note that the symbols in the figure 
represent numerically calculated results and do not represent 

experimental data. 

The theoretical studies also investigated the effect 
of varying the val.ue of e,. Lowering the value of e, 
increased the dissipation of the fluctuation energy at 
the wall, leading to decreased values for the granular 
temperature and increased solid fractions due to 
inelastic clumping. 

The theoretical solutions were extended to the con- 
vective heat transfer problem by solving the energy 
equation for the (entire flow field assuming the total 
thermal conductivity to be the simple sum of a bulk 
molecular component and a kinetic component arising 
out of the streaming motion of the particles. Solutions 
were generated for both plug and sheared flows. Solu- 
tions for the plug flows, obtained by assuming a value 
of 0.01 for 4’, provided values of Nu* that were in 
good agreement with experimental data and the Sul- 

livan-Sabersky model up to a value of Pe* z 600. 
For higher values of Pe*, the theoretical solutions 
predicted values for Nu* that were higher than those 
observed in the experiments. 

Three combinations of e, and e, were investigated 
in order to examine the convective heat transfer 
behavior in sheared granular flows. For all three cases, 
the profiles of Nu* vs. Pe* were found to exhibit a 
maximum for Nu*, qualitatively similar to available 
experimental data. However, the theoretical solutions 
were unable to replicate the invariance of the value of 
Nu* beyond the maximum, for increasing values of 
Pe* as observed in the experiments. Also, the theor- 
etical solutions could not replicate the shear induced 
enhancement of the heat transfer coefficient observed 
experimentally for values of slip velocities less than 4 
cm SC’. The value of e, did not significantly affect the 
value of the heat transfer coefficients. The values of 
the heat transfer coefficients were found to decrease 
significantly with an increase in the value of the specu- 
larity coefficient 4’. Rougher walls lead to reduced 
values of solid fraction adjacent to the heated wall, 
thereby increasing the effective thickness of the inter- 
stitial fluid layer adjacent to the wall. 

To investigate the influence of the streaming con- 
ductivity component on the heat transfer coefficients, 
comparisons were made amongst solutions generated 
for three different particle sizes. The results indicated 
that the streaming component became more sig- 
nificant as the particle size decreased. 

In conclusion, it must be emphasized that the 
constitutive model, based on kinetic theory, utilized 
in this work incorporates many assumptions such as 
a ‘continuum’ approximation, an isotropic radial dis- 
tribution function, and purely collisional interactions 
amongst particles that are not entirely appropriate in 
the context of most actual granular flows. However, 
in spite of these assumptions, such models are the only 
developed theoretical tools currently available that 
can qualitatively predict the shear-induced flow 
dilation and the accompanying anomalous convective 
heat transfer characteristics observed experimentally 
in flowing granular systems. 
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